
CS 237: Probability in Computing

Wayne Snyder
Computer Science Department

Boston University

Lecture 20: Bloom Filters
• Motivation: ”Call before you go”

• Exception Testing

• Bloom Filters

Probabalistic Algorithms and Data Structures

A Probabalistic or Randomized Algorithm is “an algorithm that employs a degree
of randomness as part of its logic.” (Wikipedia)

There are two principle types of randomized algorithm, depending on whether the
random behavior affects the running time, or the correctness of the results:

Las Vegas Algorithm: Guaranteed to give a correct answer, probably quickly, but
running time is uncertain and it may even run forever.

Monte Carlo Algorithm: Guaranteed to terminate quickly, but the answer is only
correct with some probability. Usually, you can run it longer to get better answers.

Punchline: “Monte Carlo algorithms are always fast, but only probably correct. On
the other hand, Las Vegas algorithms are always correct, but only probably fast.”
(Wikipedia)

Las Vegas Algorithms

Example 1: Hash Tables

Hashtables perform correct insert, delete, and member operations in O(1) expected
time, but for some inputs, the running time is O(n).

Example 2: Las Vegas Algorithm for Member of a List

Is x in the list L?

def member(x, L):
while True:

k = randint(len(L))
if L[k] == x:

return True

Is always correct, but may not terminate

Monte Carlo Algorithms

Example 1: Monte Carlo Algorithm for Storing at most N Integers in a List:

To test for membership, just do a linear search;

To delete, search for the element, and if it is there, remove it; and

To insert: If the element is not there, then add it to the front of the list
and remove the last element.

Example 2: Large File comparison

Input: File A and file B (both large) Question: Are A and B identical?
Algorithm:

if (hash(A) == hash(B)):
print(“Files identical!”)

else:
print(“Files not identical!”)

Later in this this lecture, we will look at an algorithm/data structure called a Bloom
Filter, which is a Monte Carlo algorithm for doing membership tests….

The paradigm of “exception testing” is a perfect domain for Monte Carlo
algorithm:

Basic Idea: “Call before you go!” Before doing an expensive operation, do a
quick check to see if it is even necessary.

Monte Carlo Algorithms for Exception Testing

Monte Carlo Algorithms for Exception Testing

Example: A Hyphenation Algorithm tells a word processor where to insert a
hyphen to break words at syllable boundaries, for example, at the end of the
line of right-justified text.

If you get this wrong, it is hard to read the result!

Exception Testing: Example

All typesetting programs (e.g., Word, Latex) have a hyphenation algorithm
which determines how to break up words with hyphens. You can also check
online:

Exception Testing: Example

The algorithm consists of checking various rules, and their exceptions:

Exception Testing: Example

Hyphenation Algorithm:

Exception Filter

Is “impeachment”
an exception?

“impeachment”

Look up specific exception
in (large) data structure.

<prefix> . <root>
<root> . <suffix>

. . .

Yes
grand.father
grand.son

.

.

.

No
Apply (fast) general rule.

Exception Testing: Example

Hyphenation Algorithm:

Exception Filter

Is “impeachment”
an exception?

“impeachment”

Look up specific exception
in (large) data structure.

<prefix> . <root>
<root> . <suffix>

. . .

Yes
grand.father
grand.son

.

.

.

No
Apply (fast) general rule.

Expensive!

Punchline: Filter out
useless expensive
operations!

Exception Testing: Example

Quick Quiz 1:

Now, in general:

o Applying general rule is fast (no
data lookup), say 1 ms (1/1000 sec);
o Looking up specific word is slow (must
search the data structure), say 1 second.

Now, suppose the Exception Filter is also very fast, say 1 ms.

Question: Suppose you process 100 queries: how long would it take if

(a) There are no exceptions?

(b) All 100 are exceptions?

1 ms

1 s

1 ms

1 ms

1 s

1 ms

Exception Testing: Example

Quick Quiz 1:

Now, in general:

o Applying general rule is fast (no
data lookup), say 1 ms (1/1000 sec);
o Looking up specific exception is slow (must
search the data structure), say 1 second.

Now, suppose the Exception Filter is also very fast, say 1 ms.

Question: Suppose you process 100 queries: how long would it take if

(a) There are no exceptions? 100 * (1 ms + 1 ms) = 0.2 sec

(b) All 100 are exceptions? 100 * (1 ms + 1 s) = 100.1 sec

1 ms

1 s

1 ms

Exception Testing: Example

Quick Quiz 1:

Now, in general:

o Applying general rule is fast (no
data lookup), say 1 ms (1/1000 sec);
o Looking up specific exception is slow (must
search the data structure), say 1 second.

Now, suppose the Exception Filter is also very fast, say 1 ms.

Question: Suppose you process 100 queries: how long would it take if

(a) There are no exceptions? 100 * (1 ms + 1 ms) = 0.2 sec

(b) All 100 are exceptions? 100 * (1 ms + 1 s) = 100.1 sec

(c) Out of the 100, only 10 are exceptions?

90 * (1 ms + 1 ms) + 10 * (1 ms + 1 s) = 180 ms + 10.01 s = 10.19 sec

Exception Testing

So the general idea is: Do a fast membership test before a slow search of the
disk, to avoid useless searches.

Exception Testing: Example 1

Quick Quiz 2:

Same as last time:

o Applying general rule is fast (no
data lookup), say 1 ms (1/1000 sec);
o Looking up specific word is slow (must
search the data structure), say 1 second.

BUT suppose the filter is buggy, and
misclassifies 1% of the non-
exceptions. In this case, an
unnecessary search is made, and
then the general rule is applied.
Such mistakes are called FALSE
POSITIVES.

Exception Testing
BUT the Filter is not correct, and misclassifies 1% of the non-exceptions. In
this case, an unnecessary search is made, and then the general rule is applied.
Such mistakes are called FALSE POSITIVES.

Exception Testing

Quick Quiz 2 continued:

Same as last time:

o Filtering and applying general rules are fast
say 1 ms (1/1000 sec);
o Looking up specific word is slow (must
search the data structure), say 1 second.

BUT the Filter is not correct, and misclassifies 1% of the non-exceptions. In this
case, an unnecessary search is made, and then the general rule is applied.
Such mistakes are called FALSE POSITIVES.

Questions:
a) Is this hypothesis algorithm correct, even if the filter is not? [Hint: what

happens on a false positive?]
b) Suppose you process 100 queries: how long would it take if 89 are not

exceptions, 10 are true exceptions, and 1 is a false positive.

1 ms

1 s

1 ms

Exception Testing: Example 1
Quick Quiz 2:

Questions:
a) Is this hypothesis algorithm correct, even if the filter is not? [Hint: what

happens on a false positive?] YES
b) Suppose you process 100 queries: how long would it take if 89 are not

exceptions, 10 are true exceptions, and 1 is a false positive.
89 * (1 ms + 1 ms) + 10 * (1 ms + 1 s) + 1 * (1 ms + 1 s + 1ms)

= 178 ms + 10.01 s + 1.002 s = 11.19 sec

Compare:

Exception Testing: Summary
What have we learned about the process of filtering out (expensive)
exceptions?

Ø It makes sense to check for membership in a data structure before trying to
do an access, IF the membership test is much faster than the access time.

Ø Occasionally failures of the membership test do not cause failures overall,
and the result is still much faster than NOT filtering.

Bloom Filters
A Bloom Filter is a variation of a hash
table and a bit array which is designed
for these exact conditions. A simple version is as follows:

Data Structure: A bit array A:

Algorithms: def insert(key):
A[hash(key)] = 1

def member(key):
return A[hash(key)] == 1

Questions:

a) What is the time and space complexity?
b) When does it give wrong answers (false positives)?
c) How likely are false positives?

Bloom Filters
A Bloom Filter is a variation of a hash
table and a bit array which is designed
for these exact conditions. A simple version is as follows:

Data Structure: A bit array A:

Algorithms: def insert(key):
A[hash(key)] = 1

def member(key):
return A[hash(key)] == 1

Questions

a) What is the time and space complexity? N bits, O(1) worst case
b) When does it give wrong answers (false positives)? On hash collision.
c) How likely are false positives? Depends….

Bloom Filters
A Bloom Filter is a variation of a hash table and a bit array which is designed
for these exact conditions.

The actual Bloom Filter uses K hash functions h1, h2, …, hk simultaneously:

def insert(key):
for each i:

A[hi(key)] = 1

def member(k):
return (A[h1(k)]==1) and … and (A[hk(k)]==1)

Let’s do an
example on the
board….

Bloom Filters
A Bloom Filter is a variation of a hash table and a bit array which is designed
for these exact conditions.

The actual Bloom Filter uses K hash functions h1, h2, …, hk simultaneously:

So: Constant time filter which gives false results some of the time!

For Discussion (other properties of the data structure):

Which of the following operations do you think would be easy, hard, or you don’t
know?

Deletion, Union (of two bloom filters), Intersection, Multiset

